
Singular fibres of
elliptic surfaces

Alvaro Gonzalez Hernandez

CDT in Mathematics and Statistics
Summer 2022



Contents

1 Algebraic surfaces 1
1.1 Divisors of algebraic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Algebraic equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Intersection theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Lattice theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Some invariants of surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Singularities and birational transformations 10
2.1 Blow-up of surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Du Val singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Some examples of GIT quotients . . . . . . . . . . . . . . . . . . . . . . . 13

3 Elliptic fibrations 15
3.1 Elliptic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Singular fibres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Lattices of elliptic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 The theory of K3 surfaces 22
4.1 Elliptic K3 surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 The K3 lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Study of an elliptic K3 surface 25
5.1 Elliptic fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Study of the Picard lattice of X . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Finding an upper bound of the Picard number . . . . . . . . . . . . . . . 31

5.4 Working with a supersingular surface in characteristic 2 . . . . . . . . . 35

6 Further work 36
6.1 Study of K3s in different ambient space . . . . . . . . . . . . . . . . . . . 36

6.2 Analysis of other aspects of our supersingular surface X . . . . . . . . . 37

7 Magma code 38
7.1 Geometric analysis of the surface X . . . . . . . . . . . . . . . . . . . . . 38

7.2 Construction of an elliptic fibration . . . . . . . . . . . . . . . . . . . . . 38

7.3 Intersection matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.4 Computation of an upper bound of the Picard rank . . . . . . . . . . . . 40



1

1 Algebraic surfaces

1.1 Divisors of algebraic surfaces

In this section, we will work with irreducible smooth projective surfaces X over an

algebraically closed field k. In these surfaces, we can consider thedivisor group consisting
of formal sums of irreducible subvarieties of codimension one, i.e. curves on X :

Div(X) =
{ m∑

i=1

niCi : m ∈ N, ni ∈ Z, Ci ⊂ X irreducible curve

}
.

A divisor is called effective if all ni ≥ 0 (assuming the curves Ci to be all distinct).

The degree of a divisor is defined through the degrees of the curves Ci by the formula

deg(X) =
m∑
i=1

ni deg(Ci).

As it happens in the case of curves, a non-zero rational function f ∈ k(X)× gives

rise to a divisor (f) ∈ Div(X) of degree zero defined as the difference of the zero divisor
and the pole divisor of f . Such kind of divisors are called principal divisors.

Two divisors D and D′
are said to be linearly equivalent (D ∼ D′

) if and only

if D − D′ = (f) for some f ∈ k(X). The quotient of the divisor group Div(X) by
linear equivalence is called the Picard group ofX , Pic(X), and the equivalence classes
are known as divisor classes. As seen in Hartshorne [Har77, II, Chapter 6], there is a

bijection that associates a divisor class D with the invertible sheaf OX(D) consisting
of functions in k(X) which are regular outside of D and may have zeroes of prescribed

multiplicities ifD is not effective. Then, the Picard group can be understood as the group

of invertible sheaves up to isomorphism with the structure sheaf OX as identity, tensor

product as multiplication and the dual invertible sheaf as inverse.

An alternative, more cohomological, approach to the Picard group is the following.

If we denote byO∗
X the sheaf whose sections over an open set U are the units in the ring

Γ(U,OX), with multiplication as the group operation, it is an easy exercise [Har77, III,

Exercise 4.5] to prove that

Pic(X) ∼= H1(X,O∗
X).

The equivalence between D and OX(D) allows us to extract information about a

divisor from the sheaf cohomology ofOX(D). In that regard, the following definition is

fundamental:

Definition 1.1. The canonical sheaf of an n-dimensional variety X is the highest
exterior power of the sheaf of differentials Ω1

X

ωX =
∧

n Ω1
X .
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The identification of divisors and invertible sheaves associates to ωX the canonical
divisorKX . More explicitly, we can compute this divisor through the following strategy:

Let x1, . . . , xn be a system of local coordinates of our variety, we can consider a

volume element dx1 ∧ dx2 ∧ · · · ∧ dxn. Then, if we pick n elements f1, . . . , fn ∈ K(X)
that form a (separable) transcendence basis, that is, such that k(f1, . . . , fn) ⊂ k(X) is
a finite algebraic extension; and 0 ̸= g ∈ k(X), we get that s = g df1 ∧ · · · ∧ dfn is a

rational n-form. Locally, we can compare it to the local volume element dx1 ∧ · · · ∧ dxn

by means of the Jacobian determinant J :

s = g df1 ∧ · · · ∧ dfn = J · g dx1 ∧ · · · ∧ dxn, where J = J
( f1, . . . , fn
x1, . . . , xn

)
= det

( ∂fi
∂xj

)
.

By the chain rule, a different choice of local coordinates x1, . . . , xn multiplies J by an

invertible function, so that the zeroes and poles of J are well defined. This makes it

possible to determine the zeroes and poles of s, by defining the valuation of s at a prime

divisor Γ by

vΓ(s) := vΓ(J · g).

We can then set

div(s) =
∑
Γ

vΓ(s) Γ.

The canonical class ofX can be defined asKX = div(s) for any rational n-form. This is

a well defined divisor class, because two different n-forms s and s′ are related by s = hs′

with 0 ̸= h ∈ k(X) a rational function, and then, div(s) = div(s′) + div(h).

Example 1.1. Let X be a smooth surface of degree d in P3
and let H be a hyperplane

section. Then,KX ∼ (d− 4)H and ωX = OX(d− 4).

In order to compute the canonical class of divisors, we can also use the following

practical result [Rei962, Section A.11].

Theorem 1.1 (Adjunction formula). Suppose that Y is a smooth divisor onX . Then,

KY = (KX + Y ) |Y .

Here, the restriction of divisor classes means to first take a divisor D on Y with

D ∼ KX + Y and such that D does not contain Y and then, intersect D with Y to get

the divisor class (KX + Y ) |Y .

Once we know the canonical divisor, we can define the geometric genus of X as

pg(X) = h0(X,ωX). This will be an important invariant of surfaces, as we will see in

section 1.5.

Example 1.2. Let X be a smooth surface of degree d in P3
. Then,

pg(X) =

(
d− 1

3

)
.
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1.2 Algebraic equivalence

Linear equivalence is not the only equivalence relation that can be defined on divisors

of a surface.

Definition 1.2. A divisor D on X is said to be algebraically equivalent to zero
(denoted D ≈ 0) if there is a connected scheme T and an effective divisor D on X × T ,
such that D is flat over T and there exist two points t1, t2 ∈ T whose fibres Dt1 , Dt2 on D
satisfy

D = Dt2 −Dt1 .

We say that two divisors D1, D2 are algebraically equivalent if D1 −D2 ≈ 0.

Intuitively, the idea behind this definition is that two divisors are equivalent if there

is an algebraic family Dt with t ∈ T connecting D1 and D2.

A key observation is that by pickingT = P1
, it is easy to check that linear equivalence

implies algebraic equivalence. This fact suggests that by considering the quotient of the

divisor group by algebraic equivalence, we will get a group that is related to the Picard

group. That is indeed the case.

Definition 1.3. The Néron-Severi group of X is the divisor group Div(X) modulo
algebraic equivalence

NS(X) = Div(X)/ ≈ .

As a consequence of the theorem of the base (valid for smooth projective varieties),

we have the following result:

Theorem1.2. TheNéron-Severi group of a smooth projective variety is a finitely generated
abelian group [GH94, Section 3.5].

The rank of the Néron-Severi group of X is called the Picard number and denoted
by ρ(X). This quantity will be the main object of study of this project.

Another alternative view of the Néron-Severi group is the following: if we assume

X to be a complex manifold, GAGA-style [Ser56] results allow us to change between

the algebraic and the analytic categories (in such a way such that, for instance OX can

be identified with the sheaf of holomorphic functions on X and O∗
X with the subsheaf

consisting of the non-vanishing holomorphic functions). The exponential function then

gives a sheaf homomorphism exp: OX → O∗
X which allows us to construct an exponential

sheaf sequence

0 −→ Z −→ OX −→ O∗
X −→ 0.
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At the same time, this sequence induces a long cohomology sequence

0 −→ H1(X,Z) −→ H1(X,OX) −→ Pic(X)
c1−→ H2(X,Z) −→ · · ·

where the connection morphism c1 is known as the first Chern map. Then, the image

of c1 can be identified with the Néron–Severi group and we naturally get that NS(X) is
a finitely generated abelian group from the fact that it is a subgroup of H2(X,Z). The
kernel of c1, on the other hand, is isomorphic to the quotient

Pic0(X) = H1(X,OX)/H
1(X,Z),

which is known as the Picard variety of X . This variety is an abelian variety, and if

instead of working with X a surface, we consider a curve C ; Pic0(C) is isomorphic to

the Jacobian variety of C .

Going back to the surface case, we have that the Picard group fits in the following

exact sequence

0 −→ Pic0(X) −→ Pic(X) −→ NS(X) −→ 0.

For fields of positive characteristic, this theory does not hold as such, but we have

a similar notion by using instead ℓ-adic étale cohomology, as NS(X) has a map to

H2
ét
(X,Qℓ). There are some differences with respect of the characteristic zero case; to

give an example of how these theories are different, Igusa constructed an example of

a smooth projective surface X with Pic0(X) non-reduced, and hence not an abelian

variety [Igu5511]. But this theory is still very useful to deduce information about the

characteristic zero case, as we will see in section 7.3.

1.3 Intersection theory

One of the reasonswhy it is so interesting to study the Picard group of a smooth algebraic

surfaceX is because we can endowed it with an intersection form [Sha13, Chapter IV].

Theorem 1.3 (Intersection pairing). Let X be a smooth projective surface. Then,
there exists a pairing

Div(X)×Div(X) −→ Z
(D1, D2) 7−→ D1 ·D2

satisfying the following properties:

1. D1 ·D2 is a bilinear and symmetric pairing.
2. D1 ·D2 depends on D1 and D2 only up to linear equivalence, i.e.

D1 ∼ D3 =⇒ D1 ·D2 = D3 ·D2.

3. If C and D are smooth curves that do not have any common components,

C ·D =
∑

P∈C∩D

(C ·D)P

where (C · D)P = dimkOY,P/(f, g) and f and g are local equations for C and D
respectively at the point P .
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The second condition implies that this intersection pairing extends to Pic(X).

Example 1.3. In P2
, if we let C : X4 = Y 3Z and D : X2 = Y Z , we get

(C ·D)[0:0:1] = dimk

k[X, Y, Z][0:0:1]
(X4 − Y 3Z,X2 − Y Z)

= dimk

k[x, y](0,0)
(x4 − y3, x2 − y)

= dimk

k[x](0)
((x2 − 1)x4)

= dimk

k[x](0)
(x4)

= dimk(k ⊕ kx⊕ kx2 ⊕ kx3) = 4.

Similarly (C ·D)[1:1:1] = 1, (C ·D)[−1:1:1] = 1, and (C ·D)[0:1:0] = 2. ThereforeC ·D = 8.

More generally, on P2
, the class of a divisor is given by its degree. In P2

we also have

the following result:

Theorem 1.4 (Bezout’s). If two plane algebraic curves C and D of degrees n1 and
n2 have no component in common, they have n1n2 intersection points, counted with their
multiplicity.

We therefore deduce that the intersection pairing in P2
is given by

Div(P2)×Div(P2) −→ Z
(D1, D2) 7−→ deg(D1) deg(D2)

and therefore, this pairing over Pic(P2) = Z corresponds to multiplication, as we have

seen in the explicit example.

Assuming the divisors have no common components, it is easy to calculate the intersection

number through computing the multiplicity of intersection at all points of intersection.

However, this method does not work when the divisors have common components.

An option to bypass this difficulty is to find a linearly equivalent divisor to one of

our divisors so that it meets transversely with the other. This strategy can be used to

compute the self-intersection of curves on a surface. For instance, it can be proved in

this way that the self-intersection number of a line L on a non-singular surface X of

degree d in P3
is L · L = L2 = 2− d [Sha13, Example 4.7] and that the self-intersection

of a hyperplane section is H2 = d, as we will later see.

There is another, more elegant solution, to the problem of computing intersection

numbers involving cohomology.

Definition 1.4. Let F be an invertible sheaf onX . Then, the Euler characteristic of
F is defined as

χ(F) = h0(X,F)− h1(X,F) + h2(X,F).

For any two divisors D1, D2 ∈ Div(X), we can then define their intersection
number as

D1 ·D2 = χ(OX)− χ(OX(−D1))− χ(OX(−D2)) + χ(OX(−D1 −D2)).
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It can be proven that this definition matches all the conditions of theorem 1.3, with

the additional advantage that it is well defined for divisors with common components.

As a matter of fact, it can be deduced that for a divisor D associated to a non-singular

curve,

D2 = degD(OD(D)) = degD(NX|D),

where NX|D is the normal sheaf to X along D [Har77, V, Example 1.4.2].

Using the intersection pairing, we can restate both the Riemann-Roch theorem and

the adjunction formula for curves on surfaces [Har77, V, Propositions 1.5 & 1.6 ]:

Theorem 1.5 (Riemann-Roch). Let D be a divisor on a smooth surface X . Then,

χ(OX(D)) = χ(OX) +
1
2

(
D · (D −KX)

)
.

Theorem 1.6 (Adjunction formula). If C is a nonsingular curve on the surface X
that has genus g(C) = 1− χ(OC), then

2g(C)− 2 = (KX + C) · C = KX · C + C2.

The intersection pairing also allows us to define an equivalence relation in the divisor

class group of a surface.

Definition 1.5. We say that two divisorsD1 andD2 of X arenumerically equivalent
(D1 ≡ D2) if D1 · C = D2 · C for every C ∈ Div(X).

Let Num(X) be the quotient of the divisor group by the numerical equivalence

relation

Num(X) = Div(X) / ≡ .

It can be proven that algebraic equivalence implies numerical equivalence. As a

matter of fact, we have that

Num(X) = NS(X) / NS(X)tors.

Hencewe obtain an induced pairing onNS(X). Cohomologically, this pairing commutes

with the first Chernmap in the following sense: H2(X,Z) andH2
ét
(X,Qℓ) come equipped

with a cup-product ∪, a symmetric pairing whose image sits inside H4(X,Z) ∼= Z or,

respectively, H4
ét
(X,Qℓ) ∼= Qℓ. For divisor classes D1, D2, one gets

D1 ·D2 = c1(D1) ∪ c1(D2).

Finally, it is good to mention that there are several instances where some of these

notions of equivalence of divisors that we have seen coincide. For instance, on a smooth

hypersurface X ⊂ P3
all three linear, algebraic and numerical equivalences are the

same and we attain complete control over the curves on X by computing intersection

numbers.
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1.4 Lattice theory

Many of the most important tools that we will use to analyse surfaces come from the

fact that Num(X) forms a lattice, a free Z-module of finite rank with a non-degenerate

symmetric bilinear pairing (given in this case by the intersection pairing). For that

reason, we will go through some concepts related to lattices that are important to study

[CS99] in order to better understand the Néron-Severi group of a variety.

Definition 1.6. Let ⟨ , ⟩ denote the bilinear pair of a lattice L. Then, the Gram
matrix of L with respect to a given basis {x1, . . . , xn} is the symmetric matrix given by

ML = (⟨xi, xj⟩)ij

The determinant or discriminant of L is the determinant of its Gram matrix . A

lattice is called unimodular if |detL| = 1.

An integral lattice is a lattice with a Z-valued pairing. An integral lattice is called

even if ⟨x, x⟩ ∈ 2Z for all x ∈ L and odd otherwise.

A lattice is called positive-definite if for every non-zero element x ∈ L, ⟨x, x⟩ > 0.
Likewise, it is negative-definite if ⟨x, x⟩ < 0. It can easily be proven that a lattice is

positive-definitive if and only if its Gram matrix is a positive-definite matrix, and the

same is true for negative-definite lattices. We will use the notation L−
to refer to the

lattice whose Gram matrix is the opposite of the lattice L.

The signature of L is defined as the signature of its Gram matrix ML, i.e. the pair

(s+, s−) where s+ is the number of positive eigenvalues ofML and s− is the number of

negative eigenvalues.

There are some particular types of lattices of special relevance, which are known as

root lattices. Let L be a definite even integral lattice. A root of L is an element x ∈ L
with ⟨x, x⟩ = ±2. We will denote byR(L) the set of roots of L. Then,

Definition 1.7. A definite even integral lattice is called a root lattice if its generated
by its roots.

An important result in Lie algebras states that any positive-definite even integral

root lattice is isometric to an orthogonal sum of root lattices of three types: Ak with

k ≥ 1, Dm with m ≥ 4 and En with n ∈ {6, 7, 8}. These lattices can be defined in the

following way:

Definition 1.8. A lattice L of rank r is a root lattice of typeAr,Dr orEr if there exists
a basis {α1, . . . , αr} ⊂ R(L) of L such that the following holds: for 1 ≤ i < j ≤ r,
⟨αi, αj⟩ = 0 unless

An ⟨αi, αj⟩ = −1 ⇐⇒ i+ 1 = j.

Dn ⟨αi, αj⟩ = −1 ⇐⇒ i+ 1 = j < n, or i = n− 2, j = n.

En ⟨αi, αj⟩ = −1 ⇐⇒ i+ 1 = j < n, or i = 3, j = n.
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1.5 Some invariants of surfaces

Wewill now present some of the main invariants that we can use to analyse an algebraic

surfaceX . LetH i(X) represent the i-th singular cohomology group overC in the case of

characteristic zero or the i-th ℓ-adic étale cohomology group for some prime ℓ different
than the characteristic of definition, for positive characteristic.

Then, we define the i-th Betti number by

bi(X) = dimH i(X).

Using these Betti numbers, the topological Euler number is defined as

e(X) =
4∑

i=0

(−1)ibi(X).

It is important not to confuse this invariant with the Euler characteristic of X , which

is defined as χ(X) = χ(OX).

The arithmetic genus is defined as

pa(X) = (−1)dimX(χ(OX)− 1).

The irregularity of X is defined as

q(X) = h1(X,OX).

In the case of curves, the irregularity, the geometric and arithmetic genus are all equal

to the genus of the curve. However, in surfaces in characteristic zero, the irregularity is

equal to the dimension of the Picard variety, which also corresponds to the difference

between the values of the geometric and arithmetic genus. Furthermore, all the Euler

characteristic, the geometric genus and the irregularity of a smooth projective surface

are invariant by birational morphisms between smooth surfaces.

In characteristic zero, we can also useHodge theory to further decompose the complex

cohomology according to the sheaf of regular p-forms Ωp
X on the surface. By setting

Hp,q(X) = Hq(Ωp
X), we obtain the decomposition ([BHPV04, IV, Theorem 2.9])

Hk(X,C) =
⊕

p+q=k

Hp,q(X).

We will define the Hodge numbers of the surface X by

hp,q(X) = dimHp,q(X,C).
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These numbers are classically represented in a diagram known as theHodge diamond:

h2,2

h2,1 h1,2

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

The fact that Hp,q(X) = Hq,p(X) and Serre duality, also allow us to deduce the

following relations among the Hodge numbers:

hp,q(X) = hq,p(X), hp,q(X) = h2−p, 2−q(X).

Combining all that we know allows us to deduce that the Hodge diamond is given

by

1

q q

pg h1,1 pg

q q

1

Another key relation between these invariants comes from Noether’s formula

12χ(X) = e(X) +K2
X .

As previously mentioned, regardless of the characteristic, there is a map fromNS(X)
to H2(X). It has been proven that this induces a bound for the Picard number

ρ(X) ≤ b2(X).

In characteristic zero, there is even a stronger bound given by

ρ(X) ≤ h1,1(X) = b2(X)− 2h2,0(X).

This is a direct consequence of Lefschetz theoremon (1, 1)-classes [BHPV04, IV, Theorem
2.12], which states that given a surface with h2,0(X) > 0, we have that

NS(X) = H1,1(X) ∩ i(H2(X,Z)),

where i is the morphism to H2(X,C) induced by tensoring H2(X,Z) by C.
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2 Singularities and birational transformations
So far, we have been working with smooth surfaces. While working with singular

surfaces is slightly trickier, there are still multiple techniques through which we can

relate these with birationally equivalent smooth surfaces. One of these is the use of

blow-ups.

2.1 Blow-up of surfaces

In this project, wewill only consider the blow-up of points in surfaces, but other subvarieties

can be blown-up as well. For a review of this theory, one can check Shafarevich’s book

[Sha13, Section 2.4].

LetX be a surface, and letP a point inX . Furthermore, letU be an open neighborhood

of P in X , and let (x1, x2) be local coordinates, so that the P corresponds to (0, 0). We

can then consider

Ũ = {((x1, x2), [y1 : y2]) ∈ U × P1 | x1y2 = x2y1}.

Clearly, we have a map σU : Ũ → U , which is the projection onto the first factor. We

then have that if (x1, x2) ̸= (0, 0), then σ−1
U ((x1, x2)) = {((x1, x2), [x1 : x2])}, that

σ−1
U (P ) = {P} × P1

, and therefore σU defines an isomorphism between σ−1
U (U \ {P})

and U \ {P}. If we now take the gluing of X and Ũ along X \ {P} and U \ {P}, we
obtain a surface Y together with a morphism σ : Y → X such that

1. σ−1(P ) is a smooth rational curve that is contracted to P through σ.
2. When restricted to the open subsetsY \σ−1(P ) andX\{P}, σ gives an isomorphism.

The morphism σ is known as the blow-up of X along P . The curve σ−1(P ) is called
the exceptional divisor and is usually denoted by E.

Let C be a curve in X . The strict transform of C under the blow-up of X along P
is the closure C̃ in Y of σ−1(C \ {P}). The strict transform of a curve is always a curve.

If P ̸∈ C , then C̃ = σ−1(C), so that C̃ = σ∗C , the pull-back of the divisor class of C
through σ. For the more general case where C is an irreducible curve passing through

P with multiplicitym, we have [Har77, V, Proposition 3.6.] that

σ∗C = C̃ +mE

In the case that X is a smooth surface and σ : Y → X the blow-up along P , we can

say even more:

• For every two divisors D1, D2 on X we have that

σ∗D1 · σ∗D2 = D1 ·D2 σ∗D1 · E = σ∗D2 · E = 0

• The canonical divisor transforms via pull-back of divisor classes through σ∗
asW

KY = σ∗KX + E.
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• The blow-up σ induces an isomorphism

Pic(X)⊕ Z −→ Pic(Y )

(OX(D), n) 7−→ OY (σ
∗D + nE)

which extends to the Néron-Severi groups. In particular ρ(Y ) = ρ(X) + 1 and

h1,1(Y ) = h1,1(X) + 1.

• The exceptional divisor satisfies that E2 = −1 on Y [Sha13, Section 2.4.4].

Generally, any smooth rational curveE onX self-intersection−1 is called a (−1)-curve.
These curves play an important role in the study of surfaces up to birational equivalence,

due to the following results:

Theorem2.1. Let f : X → Y be a birational morphism between two smooth projective
surfaces. Hence f is the composition of a finite number of blow-ups and isomorphisms.

The following theorem states what blow-ups do to surfaces:

Theorem2.2 (Castelnuovo contractibility criterion). Let Y be a smooth projective
surface, and suppose it has a (−1)-curve E. Then there is a smooth projective surface X
and a point P ∈ X such that there is a blow-up σ : Y → X with σ−1(P ) = E.

This theorem basically states that whenever on a smooth surface X there exists a

(−1)-curve, we can contract it to get a smooth projective surface whose Picard number

is smaller. This gives us a sense in which we can speak of minimality.

Definition 2.1. A smooth surface X is called minimal if every birational morphism
f : X → Y is an isomorphism. A minimal model for a surface X is a surface X0 which
is minimal and birational to X .

As a corollary of the Castelnuovo criterion we have the following result:

Corollary 2.1. A smooth surface X is minimal if and only if it does not contain any
(−1)-curve. In particular, every smooth surface has a minimal model.

It is important to mention, though, that minimal models of surfaces need not be

unique, for instance, it can be checked that P2
and P1 × P1

are both minimal models of

the blow-up of P2
at two points [Har92, Example 7.22].

The importance of the existence of minimal models is that it reduces the problem of

studying smooth surfaces up to birational equivalence, to studying their minimal models

up to isomorphism.
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2.2 Du Val singularities

Besides helping us to study smooth surfaces, blow-ups play a key rule in the process of

desingularisation of surfaces, that is, finding a birationalmorphism from a nonsingular

surface to a given singular surface. As a matter of fact, in many set ups, blow-ups are

all you need: Hironaka proved in 1964 that in characteristic zero, any singularity can be

resolved by a succession of blow-ups [Hir64], and in 2009, Cossart and Piltant extended

these results in positive characteristic for varieties up to dimension 3 [CP094].

The study of singularities is a big area of research on itself, so in this piece of work, we

will limit ourselves to onlyworkingwith surfaceswith, at worst, canonical singularities.

Definition 2.2. A point P ∈ X of a normal surface is called a canonical, du Val
singularity if there exists a minimal resolution f : Y → X contracting curves C1, . . . , Cr

to P , such that KY · Ci = 0 for all i, where KY is the canonical class of Y .

The idea behind studying surfaces that have this kind of singularities, besides being

able of desingularise them with blow-ups, is that they are well-behaved [Rei87]. For

instance, let X0 be a smooth surface and degenerate it to a surface X with isolated du

Val singularities. Then, the minimal resolution Y ofX lies in the same deformation class

asX0. In particular, the minimal resolution Y shares several invariants with the original

surface X0 (Betti numbers, Euler number and characteristic, and Hodge numbers over

C in the characteristic zero case).

Over algebraically closed fields in characteristic zero, it is always possible to find

changes of coordinates such that any duVal singularity can be deformed to a hypersurface

singularity given by one of the following equations:

An : x2 + y2 + zn+1 = 0 for n ≥ 1,

Dn : x2 + y2z + zn−1 = 0 for n ≥ 4,

E6 : x2 + y3 + z4 = 0,

E7 : x2 + y3 + yz3 = 0,

E8 : x2 + y3 + z5 = 0

In positive characteristic the same is true, with the small difference that in characteristics

2, 3 and 5 there are additional possibilities, as proven by Artin [Art755].

The denomination of these singularities matches the one we used to describe root

lattices and, indeed, there is a connection between lattices, singularities and simple Lie

groups, known as the McKay correspondence. If P ∈ X is a du Val singularity, the

bunch of curves C1, . . . , Cr contracted to P under a resolution can be drawn as a graph:

each curve Ci is represented by a node, and intersecting curves Ci and Cj are joined by

an edge.
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These singularities can then be identified with the following simply laced Dynkin

diagrams:

which will have connections with the Gram matrices (A−
n , D

−
n , E

−
n ) of the root

lattices as we will see in section 3.2.

Finally, there is a third way of characterising du Val singularities in characteristic

zero and that is as quotients of the affine plane by finite subgroups Γ ⊂ SL(2,C). The
idea behind this is that Γ acts linearly on A2

C by matrices with trivial determinant, and

the singularities are obtained as the quotient space A2/Γ that we can compute from the

Γ-invariant monomials in A2
[Rei87].

The groups associated to each du Val singularity are the cyclic group of order n+ 1
for An, the binary dihedral group of order 4(n − 2) for Dn, and the binary tetrahedral,

binary octahedral and binary icosahedral groups for the E6, E7 and E8 singularities

respectively.

2.3 Some examples of GIT quotients

This last characterisation of du Val singularities consists in understanding them as GIT

(geometric invariant theory) quotients, by studying the way that a group scheme acts

on an affine scheme. In this section, we would like to present a few more examples of

GIT quotients that will be relevant later on.

Definition 2.3. Let (a1, . . . , an) with ai ∈ N, and define an action of Gm on An \{0}
by

Gm × An \ {0} −→ An \ {0}
(λ, (x1, · · · , xn)) 7−→ (λa0x0, · · · , λanxn).

We define the weighted projective space P(a1, · · · , an) as the quotient of An \ {0} by
the previous action.

Usually, when we work with weighted projective spaces we work with reduced

models given by well-formed weights:

Definition 2.4. We say that a weight (a1, . . . , an) is well-formed if any n− 1 of the
ai are coprime. That is, for all 1 ≤ i ≤ n

gcd(a1, . . . , âi, . . . , an) = 1
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The second example is a generalisation of weighted projective spaces for products

of the projective space.

Definition 2.5. Let

M =

(
a11 a12 · · · a1n b11 b12 · · · b1m
a21 a22 · · · a2n b21 b22 · · · b2m

)
∈ Mat2×(n+m)(Z)

We define the scroll FM as the quotient of (An \{0})× (Am \{0}) by the following action
of Gm ×Gm:

(Gm ×Gm) × ((An \ {0})× (Am \ {0})) −→ (An \ {0})× (Am \ {0})
((λ, 1), (t1, . . . , tn;x1, . . . , xm)) 7−→ (λa11t1, . . . , λ

a1ntn;λ
b11x1, . . . , λ

b1mxm)

((1, µ), (t1, . . . , tn;x1, . . . , xm)) 7−→ (µa21t1, . . . , µ
a2ntn;µ

b21x1, . . . , µ
b2mxm)

Example 2.1. In the case where a1i = 1, a2i = 0 for all 1 ≤ i ≤ n and b1j = 0, b2j = 1
for all 1 ≤ j ≤ m, we have that FM

∼= Pm−1 × Pn−1
.

Example 2.2. In the case where a2i = 0 for all 1 ≤ i ≤ n and b1j = 0, b2j = 1 for all

1 ≤ j ≤ m, we have that FM
∼= P(a11, · · · , a1n)× Pn−1

.

Example 2.3. In the case whereM is of the form

M =

(
1 1 −b1 −b2 · · · −bm
0 0 1 1 · · · 1

)
∈ Mat2×(2+m)(Z)

for some bi ∈ Z, we will denote FM by F(b1, b2, . . . , bm) [Rei962, Section 2.2].

Example 2.4. For n > 0 the surface Σn = F(n, 0) is known as the n-th Hirzebruch
surface.
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3 Elliptic fibrations
As the title of the project hints, we will be interested in surfaces with a very particular

structure.

Definition 3.1. A genus 1 fibration on a smooth projective variety X is a surjective
proper morphism to a variety Z , f : X → Z , such that all fibers except for finitely many
are smooth curves of genus 1.

Given that an elliptic curve is a genus 1 curve with a point, in order to construct an

elliptic fibration, we need to find a method to set a point in each fibre in a way that we

can still work consistently with the group law of the elliptic curve in each fibre. The

way we can achieve this is by finding what is known as a section.

Definition 3.2. Let f : X → Z be a morphism of algebraic varieties. A section of f
is a morphism

σ : Z −→ X

such that the composition

f ◦ σ : Z −→ Z

is the identity map on Z .

Then,

Definition 3.3. An elliptic fibration is a genus 1 fibration f : X → Z with a section.

3.1 Elliptic surfaces

In this project we will be particularly interested in the cases of fibrations where X is a

surface, for which we will need a few more hypothesis.

Definition 3.4. An elliptic surface is a genus 1 fibration f : X → C from a smooth
projective surface X to a smooth projective curve C with a section σ0 : C → X which is
relatively minimal, that is, that no fibre contains a (−1)-curve.

The classical theory of elliptic surfaces dealswith surfaces defined over an algebraically

closed field. We will also want to look at other fields, such as k = Q. We will say that an

elliptic surface X over C is defined over k if both X and C are defined over k and both

of the maps

f : X −→ C and σ : C −→ X

are defined over k.
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Example 3.1. The surface defined by the equation

sy2z = x(x− z)(sx− tz) ⊂ P2
x,y,z × P1

s,t

is an elliptic surface over Q with a fibration to P1
given by the projection to the second

factor and section given by

P1 −→ P2 × P1

[s : t] −→ ([0 : 1 : 0], [s : t]).

Let X be an elliptic surface over C defined over k. We would like to associate to

X an elliptic curve E/K where K = k(C). Conversely, to each elliptic curve E/K we

would want to assign a birational equivalence class of elliptic surfaces.

The way we can do this is the following:

Any section σ : C → X of f defines a curveD = σ(C) insideX which meets every

fibre transversally in a single point. The curve D extends naturally to the underlying

scheme X by taking the Zariski closure; thus it meets the generic fibre in a single K-

rational point.

Conversely, given any P ∈ E(K), the closure of P in X is a curve in X . Let D
denote the restriction to the elliptic surface X . By construction, D is endowed with a

finite, birational morphism

f |D : D −→ C.

Since C is smooth this is an isomorphism of D onto C . Thus the inverse of f |D gives a

unique section σ : C −→ X with Im(σ) = D.

Example 3.2. Going back to our previous example, the point [x0 : y0 : z0] ∈ E(Q(t))
would correspond to the section

P1 −→ P2 × P1

[s : t] −→ ([x0 : y0 : z0], [s : t]).

When we work with elliptic surfaces, we want to discard as examples of fibrations

those who are "constant", in the sense that their fibres do not change with C . More

rigorously,

Definition 3.5. An elliptic surface X → C splits (over k) if there is an elliptic curve
E0/K and an isomorphism

ϕ : X
∼−→ E0 × C

such that the following diagram commutes

X E0 × C

C

ϕ

f π2
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When we restrict ourselves to working with non-split elliptic surfaces, some of the

theorems that have been proven for elliptic curves over number fields still work for

function fields. In particular, we have,

Theorem 3.1 (Mordell-Weil theorem for function fields). Let X → C be an
elliptic surface defined over a field k, and let E/K be the corresponding elliptic curve over
the function field K = k(C). If X → C does not split, then E(K) is a finitely generated
group [Sil94, III, Theorem 6.1].

When working with fibrations defined over P1
, the fact that a surface is non-split

implies that the determinant of E(k(t)) is a non constant rational function (which, with a
change of coordinates becomes a polynomial). The places where this polynomial become

zero therefore correspond to fibres that are not genus 1 curves, hence, singular curves.
These are known as singular fibres and, as we mentioned, their existence is guaranteed

in the case of non-split elliptic surfaces defined over P1
(though this is not the case for

fibrations over curves with genus greater than 1, as Schütt and Shioda argue [SS097,

Section 4.9]).

3.2 Singular fibres

From now on, we will focus in the case of non-split elliptic surfaces whose fibration is

defined over P1
. Let Fv = f−1(v) be a singular fibre. We can always write it as a divisor

Fv =
mv−1∑
i=0

µv,iΘv,i

where

• mv is the number of distinct irreducible components in Fv.

• Θv,i are the irreducible components.

• µv,i is the multiplicity of Θv,i in Fv.

We can arrange the ordering of the irreducible fibre componentsΘv,i as in the following

theorem [SS19, Theorem 5.11].

Theorem 3.2. The singular fibres satisfy the following:

1. There exists a unique component of Fv which intersects the zero section O, known as
the identity component and denoted by Θv,0, which has µv,0 = 1.

2. If Fv is an irreducible singular fibre, then Θv,0 is either a rational curve with a node
(type I1) or a rational curve with a cusp (type II).

3. If Fv is a reducible singular fibre (mv > 1), then every component Θv,i of Fv is a
smooth rational curve which has self-intersection number (Θv,i)

2 = −2.

We then have the following classification of the reducible singular fibres [SS19, Theorem

5.12].
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Theorem 3.3. For simplicity, let’s writem instead ofmv and Θi instead of Θv,i. Then,
every possible reducible singular fibre can be classified into one of these types:

Im, III, IV, I
∗
b , IV

∗, III∗, II∗.

wherem > 1 and b ≥ 0. The fibre configurations are the following:

Im : Fv = Θ0 + · · ·+Θm−1

where for m = 2 the two components intersect transversely at two points so that Θ0·Θ1 = 2
and where for m ≥ 3, Θi ·Θi+1 = Θm−1 ·Θ0 = 1 for all 0 ≤ i < m.

III : Fv = Θ0 +Θ1

wherem = 2 and the two components intersect at a single point with Θ0 ·Θ1 = 2.

IV : Fv = Θ0 +Θ1 +Θ2

where m = 3 and the three components meet at a single point and the intersection numbers
are Θ0 ·Θ1 = Θ1 ·Θ2 = Θ2 ·Θ0 = 1.

I∗b : Fv = Θ0 +Θ1 +Θ2 +Θ3 + 2Θ4 + · · ·+ 2Θb+4

where m = b+5, Θ0 ·Θ4 = Θ1 ·Θ4 = Θ2 ·Θb+4 = Θ3 ·Θb+4 = 1 and we also have that
Θ4 ·Θ5 = Θ5 ·Θ6 = · · · = Θb+3 ·Θb+4 = 1.

IV ∗ : Fv = Θ0 +Θ1 + 2Θ2 + 3Θ3 + 2Θ4 +Θ5 + 2Θ6

where Θ1 ·Θ2 = Θ2 ·Θ3 = Θ3 ·Θ4 = Θ4 ·Θ5 = Θ3 ·Θ6 = Θ6 ·Θ0 = 1 and m = 7.

III∗ : Fv = Θ0 + 2Θ1 + 3Θ2 + 4Θ3 + 3Θ4 + 2Θ5 +Θ6 + 2Θ7

where Θ0·Θ1 = Θ1·Θ2 = Θ2·Θ3 = Θ3·Θ4 = Θ4·Θ5 = Θ5·Θ6 = Θ3·Θ7 = 1 and m = 8.

II∗ : Fv = Θ0 + 2Θ7 + 3Θ6 + 4Θ5 + 5Θ4 + 6Θ3 + 4Θ2 + 2Θ1 + 3Θ8

where Θ0 ·Θ7 = Θ7 ·Θ6 = Θ6 ·Θ5 = Θ5 ·Θ4 = Θ4 ·Θ3 = Θ3 ·Θ2 = Θ2 ·Θ1 = Θ3 ·Θ8 = 1
and m = 9.

For any other pair i < j we have that Θi ·Θj = 0, i.e. Θi and Θj are disjoint.
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This information can be summarised in the next table:

Type mv Configuration

I0 1

I1 1

In n

II 1

III 2

IV 3

I∗0 5

I∗n n+ 5

IV ∗ 7

III∗ 8

II∗ 9

Once again, we have a connection between these singular fibres and the ADE-

classification that we have explored in past sections, which is given by the restricted

dual graph.

The dual graph of a reducible fibre Fv withm irreducible componentsΘi consists of

m vertices and several edges connecting them with a number indicating the intersection

number of the components if they intersect each other. Then, by the restricted dual
graph of a reducible fibre Fv, we mean the subgraph of the dual graph obtained by

deleting the vertex Θ0 (and the edges starting from it).



20

We therefore have,

Proposition 3.1. The restricted dual graph of a reducible fibre is the same as the Dynkin
diagram for the root lattices of typesAn,Dn,En. Furthermore, if we denote by Tv the lattice
of rank m − 1 generated by the Θi with the intersection pairing, Tv is a negative-definite
lattice isomorphic to a root lattice of type A−

n , D
−
n or E−

n according to the following table

Type of Fv Im(m > 1) III IV I∗b (b ≥ 0) IV ∗ III∗ II∗

Root Lattice A−
m−1 A−

1 A−
2 D−

b+4 E−
6 E−

7 E−
8

The next natural question involves how to compute the type of the singular fibres of

an elliptic fibration. The idea is that given an elliptic curve defined over the function field

of a curve C , we can always find a change of coordinates to a generalised Weierstrass

equation in P2
of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Given a singular fibre, by performing blow-ups and blow-downs according to a procedure

known as Tate’s algorithm, we can find a model that is locally minimal at that singular

fibre. Once we have that minimal model, we can easily read the type of singular fibre

from the ai coefficients. The details of this algorithm can be found in the works of Schütt

and Shioda [SS097, Section 4.2], and Silverman [Sil94, IV, Section 9].

3.3 Lattices of elliptic surfaces

Previously, we claimed that studying the lattice Num(X) of a surface was a useful

method for understanding it geometrically. In the case of elliptic surfaces, this lattice

will also give us information about its associate elliptic curve over a function field.

The first comment that must be done about elliptic surfaces is that their Néron-

Severi group is always torsion-free [SS19, Theorem 6.4]. That is, algebraic and numerical

equivalence coincide, so we can talk about their Néron-Severi lattice.

Not only that, but in terms of equivalence, when we work with a fibration there is

some sort of uniformity in the fibres. If f : X → C is an elliptic fibration, two fibres are

linearly equivalent if and only if either they are the same or the base curve C has genus

zero. Regardless of the base curve C , any two fibres are algebraically equivalent.

Additionally, the fibration sets certain restrictions on the geometry ofX . For instance,

K2
X = 0 and if we let F denote any smooth fibre of an elliptic fibration then, F 2 = 0.

For that reason, when we are working with the Néron-Severi group of an elliptic surface

X it is important to separate the contributions of the divisors of the fibration from the

other divisors.
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Definition 3.6. The trivial lattice Triv(X) if the sublattice of NS(X) generated by
the zero section O and fibre components. More explicitly,

Triv(X) = ⟨O,F ⟩ ⊕
⊕
v∈R

Tv,

where R denotes the finite subset {v ∈ C(k)|Tv ̸= 0} of points on the base curve where the
singular fibres are located.

It is then easy to check that

⟨O,F ⟩ =
(
−χ(X) 1

1 0

)
and therefore

ρ(X) ≥ rank(Triv(X)) = 2 +
∑
v∈R

(mv − 1)

The divisors that are part of the trivial lattices are known as vertical divisors. On
the other hand, we have the divisors known as horizontal divisors, which are linear

combinations of irreducible curves with integer coefficients where each curve meets

any fibre with a given and fixed multiplicity m > 0. We also refer to such a curve as a

multisection of the degree m, and if m = 1, we simply call them sections. This name

is not casual, as it happens to be that these horizontal sections correspond to the sections

of our elliptic fibration. More precisely, we can always express any divisor as a sum of a

vertical and a horizontal divisor:

Theorem 3.4. Let f : X → C be an elliptic surface with generic fibre E(K) over
K = k(C). The map that sends a point P ∈ E(K) to the horizontal component of its
associate divisor is well-defined and defines an isomorphism of abelian groups

E(K) ∼= NS(X)/Triv(S).

As a consequence, we have,

Corollary 3.1. Let X be an elliptic surface and let r = rank(E(K)). Then,

ρ(X) = r + 2 +
∑
r∈R

(mv − 1).

Theorem 3.4 has an important consequence, which is that if weworkwith the rational

lattice NS(X)Q = NS(X) ×Q Q, we can perfectly define the horizontal divisors in a

unique way inside of this space, obtaining a group homomorphism

ϕ : E(K) −→ NS(X)Q

whose kernel is ker(φ) = E(K)tors. From the intersection pairing in NS(X)Q, we thus
obtain a pairing in E(K)/E(K)tors known as the height pairing, which makes this

group a lattice known as theMordell–Weil lattice of E(K).
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4 The theory of K3 surfaces

Some of the geometric properties that an elliptic surfaceX must satisfy, such asK2
X = 0

add strong restrictions to which kind of surfaces admits an elliptic fibration.

In terms of complexity, on the simpler side of the spectrum, we have elliptic rational
surfaces which have been completely studied and classified, mostly due to the fact that

they always have Picard rank 8 and their Néron-Severi lattice is E8 [SS097, Chapters 7

and 8]. On the other side, we have elliptic surfaces with what it is known as Kodaira

dimension κ = 1, called by some authors "honestly elliptic surfaces", for which we

do not know much about their structures.

For this project, we decided to focus in an intermediate case and study K3 surfaces.
Many results have been proven for these surfaces, yet there are still interesting questions

to ask about them.

Definition 4.1. A K3 surface is a compact surface X with

h1(X,OX) = 0 and KX = 0.

From the definition, we deduce that all K3 surfaces have q(X) = 0 and pg(X) = 1.
By Serre duality, and the definition of the Euler characteristic, we get that χ(X) = 2.
From Noether’s formula, we then deduce that e(X) = 12χ(X) = 24 and this give us

the Betti numbers b0(X) = 1, b1(X) = 0, b2(X) = 22, b3(X) = 0 and b4(X) = 1.
The Hodge diamond of a K3 can therefore easily computed to be:

1

0 0

1 20 1

0 0

1

Some examples of K3 surfaces are

• Smooth quartics in P3
.

• Smooth intersections of degree (2, 3) in P4
or (2, 2, 2) in P5

.

• Double coverings X → P2
branched along a smooth sextic curve. These can be

understood as varieties in the weighted projective space P(3, 1, 1, 1) of degree 6.

In general, using the methods explained in section 1.1 to compute the canonical divisor

of surfaces in the weighted projective space P(a1, a2, a3, a4), we can deduce that for

appropriate well-formed weights (a1, a2, a3, a4), a smooth hypersurface with degree

a1 + a2 + a3 + a4 is a K3 surface. In 1979, Reid computed all possible 95 families of K3

surfaces that arise this way through an algorithm that has been described and improven

by Brown and Kasprzyk [BK164, Section 2].
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The following example of K3 surface is also relevant.

Definition 4.2. Let A be the Jacobian of a smooth hyperelliptic curve of genus 2 and
let ι : A → A be the involution defined by ι(x) = −x. The Kummer surface associated
to A is the resolution of the surface defined as the quotient of A by ι, which has 16 singular
points.

For instance, if we take A to be isomorphic to the product of two elliptic curves

E1 : y2 = f(x), E2 : s2 = g(t),

an affine model of the Kummer surface of E1 × E2 is given by the double covering

w2 = f(x)g(t).

4.1 Elliptic K3 surfaces

We can now focus on the type of K3 surfaces that we are interested in, those who admit

an elliptic fibration. Since any K3 surface X is simply connected by definition, the base

curve of any elliptic fibration has to be P1
, as any regular 1-form on the base pulls back

to a regular 1-form on X . It is then possible to prove that X admits a globally minimal

Weierstrass form

y2 + a1(t)xy + a3(t)y = x3 + a2(t)x
2 + a4(t)x+ a6

where all the ai(t) are polynomials that satisfy that deg(ai(t)) ≤ 2i and that there is

some i such that deg(ai(t)) > 1.

It is important to note as well that not all K3 surfaces are elliptic. In characteristic

different than 2 and 3, there is an easy criterion to check if a K3 surface admits a genus

1 fibration:

Theorem 4.1. A K3 surfaceX admits a genus 1 fibration if and only if there is a non-
zero divisor D ∈ NS(X) with D2 = 0 [PŠŠ716, Section 3, Theorem 1].

The thought behind the proof of this theorem is that, by adding and subtracting

(−2)-curves to D, we can always find a divisor D′
such that (D′)2 = 0 and |D′| is base

point free. From the adjunction formula, we deduce that

2g(D′)− 2 = KX ·D′ + (D′)2 = 0 + 0 = 0,

and therefore D′
has genus 1, and |D′| induces the elliptic fibration.

To upgrade this condition to get a K3 surface to admit an elliptic fibration, we need

the next result:

Theorem 4.2. LetX be a K3 surface with a genus one fibration induced by a non-zero
divisor D with D2 = 0, as in theorem 4.1. Then any divisor C ∈ Div(X) with D · C = 1
gives a section of the fibration, therefore making such fibration elliptic [SS19, Proposition
11.31].
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Although the last two theorems are good to construct explicit fibrations, in order to

check if a K3 surface admits a fibration, we have a nicer condition:

Theorem 4.3. Any K3 surface X with Picard number ρ(X) ≥ 5 admits an elliptic
fibration [LSY13, Section I.3.4].

4.2 The K3 lattice

From the fact that the second Betti number of a K3 surface X is 22 and h1,1(X) = 20,
we deduce that in the characteristic zero case, the Picard rank must be less or equal than

20 and in positive characteristic, it can be 22 at most. Also, the Hodge index theorem

implies that the Néron-Severi lattice of a K3 surface must have signature (1, ρ(X)− 1).

These two ideas already give us some information about NS(X), but the biggest

contribution to understanding this lattice comes from the fact that H2(X,Z) can be

seen as a lattice endowed with the cup product and that, regardless of theX considered,

this lattice is always the same up to isometry. The lattice H2(X,Z) is known as the K3
lattice, has signature (3, 19) and presents the following structure [LSY13]:

Proposition 4.1. The K3 lattice is the even unimodular lattice

LK3 = U ⊕ U ⊕ U ⊕ E−1
8 ⊕ E−1

8

where U is the 2-dimensional lattice with Gram matrix

U =

(
0 1
1 0

)
.

In positive characteristic the classification of all possible lattice configurations that

can arise from the Néron-Severi group of a K3 surface is tricky due to the existence of

inseparable base changes. However in characteristic zero, over an algebraically closed

fields, these lattice configurations can be studied from the embedding NS(X) ↪→ LK3.

Shimada carried the computations to find all possible configurations for elliptic surfaces

in the complex case [Shi001]:

Theorem 4.4. Among all possible complex elliptic K3 surfaces, there are 3693 distinct
admissible configurations of pairs (Σ, G) where Σ is the sum of root lattices of ADE-type
and G is a finite abelian group representing the torsion of the Mordell-Weil group of one of
these K3 surfaces.

Despite knowing the classification of all elliptic K3 surfaces, it is still a challenge

to find examples of each configuration. Given a K3 surface, it is not an easy task to

determine its geometric information either, as we will attempt in the next section.
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5 Study of an elliptic K3 surface
The goal of this section is to apply some of the techniques expressed in the previous

sections to understand the geometry and of some examples.

Let X be the hypersurface of P3
x,y,z,w given by the equation

f : x3y + xy2w + zyw2 + z3w = 0

This surface appeared while attempting to find K3 hypersurfaces on the scroll

Su,v,x,y,z :

(
1 1 0 −1 −1
0 0 1 1 1

)
.

By performing a search among all the possible hypersurfaces that could be expressed

as the sum of four monomials with weight

(−1
3

)
, one of the surfaces Y with the most

reducible fibres was the one defined by the homogeneous weighted polynomial

g : x3 + uvxy2 + uv2y2z + u2vz3 = 0

which has du Val singularities E8 in [0 : 1 , 0 : 0 : 1], A2 in [1 : 0 , 0 : 1 : 0] and A5 in

[1 : 0 , 1 : 0 : 0].

There is a birational map

Y −→ X

[u : v , x : y : z] 7−→ [x : uy : uz : vy]

that allows us to relate Y to the hypersurface X given by a degree 4 polynomial in P3
.

Since a birational map between K3 surfaces is automatically an isomorphism due to the

fact that the canonical divisor is nef, we can study this surface in projective space, where

we have more control over its geometry.

The gradient of X is

∇{x,y,z,w}f = {3x2y + wy2, x3 + 2wxy + w2z, w2y + 3wz2, xy2 + 2wyz + z3}

By finding when all these factors are simultaneously zero, it can easily be checked that

X is a singular surface with singular points [0 : 1 : 0 : 0] and [0 : 0 : 0 : 1]. Either by
performing successive blow-ups in these points or by finding a suitable transformation

into a normal form, we can check that both of these singularities are du Val singularities

of type A8. In Magma [BCP979], both the singularities and the geometry of X can be

studied through the code 7.1.

We would be like to answer some questions about X such as whether it admits an

elliptic fibration or what its Picard rank is.
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5.1 Elliptic fibrations

Let’s recall that theorem 4.1 stated that any divisor with self-intersection number 0
induced a genus 1 fibration of X .

Our surface X has the special virtue that it contains many lines, so let us fix one of

them: ℓ. LetH represent a hyperplane section inX . Then, (H−ℓ)2 = 0. Indeed,H2 = 4,
as the intersection of two hyperplanes in general position is a line in general position,

which we know it intersects a degree 4 surface in exactly 4 points. We also know that

ℓ2 = −2 either from the fact that we mentioned in section 1 that ℓ2 = 2−deg(X) = −2
or from the adjunction formula as g(ℓ) = 0 and H · ℓ = 1. This can easily be seen by

considering anH that contains ℓ, as thenH = ℓ+C whereC is a (possibly degenerated)

cubic and we therefore have that

H · ℓ = ℓ2 + ℓ · C = −2 + 3 = 1.

Finally,

(H − ℓ)2 = H2 − 2H · ℓ+ ℓ2 = 4− 2− 2 = 0.

From the proof of theorem 4.1 we also know that, explicitly, this genus 1 fibration is

given by the linear system |H − ℓ|, which correspond to the pencil of hyperplanes in P3

that contain ℓ. Now, to find a section of this fibration, by theorem 4.2 we need to find

a divisor E such that (H − ℓ) · E = 1. Our most two natural guesses, H and ℓ, do not

work, as

(H − ℓ) ·H = 3 (H − ℓ) · ℓ = 3.

However, for this particular example, what we can do is to consider another line ℓ′ that
is disjoint to ℓ. Because ℓ ∩ ℓ′ = ∅, we have that

(H − ℓ) · ℓ′ = H · ℓ′ − ℓ · ℓ′ = 1− 0 = 1.

Now that we have seen that the theory works, we can work out the explicit construction.

Let ℓ be the line defined by the equation x = z = 0. Then, the pencil of hyperplanes
going through ℓ is given by tx − sz = 0, where t, s ∈ k and both of them are not

simultaneously zero. This give us a genus 1 fibration over P1
defined by

X
f−→ P1

[x : y : z : w] 7−→ [s : t]

where, outside of ℓ, we have that [s : t] = [x : y]. There is a section given by the line ℓ′

defined by y = w = 0, as we have that

P1 σ−→ ℓ′ ⊂ X

[x : z] 7−→ [x : 0 : z : 0]

and therefore f ◦ σ is the identity.



27

Computing the intersection of X with tx − sz = 0, we get that the fibres X[s:t] are

given by

s3x3y + s3xy2w + s2txyw2 + t3x3w = tx− sz = 0

which, as x ̸= 0, these are isomorphic to the family of genus 1 curvesX[s:t] in P2
x,y,w with

coefficients in k[s, t]:

s3x2y + s3y2w + s2tyw2 + t3x2w = 0

In every fibre, the section that we constructed corresponds to the point of X[s:t]:

[x : y : w] = [1 : 0 : 0]

After dehomogenising the equations with respect to s and setting [1 : 0 : 0] to be the
point of infinity, if char(k) ̸= 2, 3 this elliptic fibration can then be rewritten in minimal

Weierstrass form as the elliptic curve E/k(t):

Y 2 = X3 + (−1
3
t6 + 1

3
t4 − 1

3
t2)X + (− 2

27
t9 + 1

9
t7 + 1

9
t5 − 2

27
t3)

where the change of coordinates is given by

[x : y : w] 7−→ (X, Y ) =
((2

3
t3 − 1

3
t)y + (−1

3
t6 + 2

3
t4)w

y + t3w
,
(t6 − t4)x

y + t3w

)
. (1)

If char(k) = 3, a similar change of coordinates can be found to obtain the minimal

model form:

Y 2 = X3 + (2t3 + 2t)X2 + t4X.

As a sanity check, we can observe that regardless of the characteristic of the field, the

equation of E/k(t) corresponds to a possible minimal equation of an elliptic K3 surface,

as if we express it in the form:

Y 2 = X3 + a2(t)X
2 + a4(t)X + a6(t)

all the coefficients satisfy that deg(ai(t)) ≤ 2i and deg(ai(t)) > i for some value of i.

We can now study some aspects of this fibrations. Regardless of the characteristic,

these elliptic curves always have full 2-torsion, as we always have in char(k) ̸= 2, 3 the
generators of Z/2Z× Z/2Z:

P1 = (1
3
t (2t2 − 1), 0), P2 = (1

3
t (−t2 + 2), 0), P3 = (1

3
t (−t2 − 1), 0).

and in char(k) = 3 :

P1 = (t, 0), P2 = (t3, 0), P3 = (0, 0).
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As we can compute the inverse of (1),

(X, Y ) 7−→ [x : y : w] = [3Y : t6 − 2t4 + 3t3X : 2t3 − t− 3X], (2)

we can easily check that P1 correspond to the image of the singular point [0 : 1 : 0 : 0],
P2 corresponds to the image of the singular point [0 : 0 : 0 : 1] and P3 corresponds to

the image of [0 : t : 0 : −s], which is the third point of intersection of X[s:t] with ℓ.

Using Magma (code 7.2), we can analyse other aspects of this fibration. For instance,

the discriminant and the j-invariant are

∆(E) = 16t10(t− 1)2(t+ 1)2, j(E) = 256(t4 − t2 + 1)3

t4(t− 1)2(t+ 1)2
.

In characteristic different than zero, this fibration always has 4 singular fibres:

• A split multiplicative singular fibre at t = 1 of type I2 with multiplicity 2 in the

discriminant and multiplicity 1 in the conductor.

• A multiplicative singular fibre at t = −1 of type I2 with multiplicity 2 in the

discriminant and multiplicity 1 in the conductor. Applying Tate’s algorithm, we

can see that this fibre splits if and only if −1 is a square in k.

• An additive singular fibre at t = 0 of type I∗4 withmultiplicity 10 in the discriminant

and multiplicity 2 in the conductor.

• An additive singular fibre at t =∞ of type I∗4 withmultiplicity 10 in the discriminant

and multiplicity 2 in the conductor.

In the database of K3 elliptic surfaces in theGraded RingDatabase, this fibration correspond

to the element 2471 [Shi001].

The number of reducible components of the fibre type I∗4 is 9 and the number of

reducible components of I2 is 2. Therefore, if r = rank(E(k(t)), we have that

ρ(X) = 2 + r + 2(9− 1) + 2(2− 1) = 20 + r

As for fields with char(k) = 0 the Picard rank of any K3 surface is bounded by 20, we
deduce that rank(E(k(t)) = 0. In particular, we can deduce that

E(Q(t)) = {O, (1
3
t (2t2 − 1), 0), (1

3
t (t2 − 2), 0), (1

3
t (−t2 − 1), 0)} ∼= Z/2Z× Z/2Z.

http://www.grdb.co.uk/forms/ellk3
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5.2 Study of the Picard lattice of X

From what we deduced from the previous section, the trivial lattice ofX with respect to

the fibration is

Triv(X) = U ⊕ A−1
1 ⊕ A−1

1 ⊕D−1
8 ⊕D−1

8

which has matrix:

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1


The hyperbolic plane U component has matrix(

0 1
1 −2

)
which corresponds to the intersection matrix of H − ℓ and ℓ′, where

ℓ : x = z = 0, ℓ′ : y = w = 0.

Using the inverse map (2), we can compute that the divisor which degenerates to the

singular fibre at t = 1 is the line

ℓ2 : x− z = y + w = 0,

and that the divisor that degenerates to the singular fibre at t = −1 is the line

ℓ3 : x+ z = y − w = 0.

On the other hand, the divisors that degenerate to the fibres at t = 0 and t = ∞ are,

respectively,

ℓ4 : y = z = 0, ℓ4 : x = w = 0.
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Each of these divisors contains one of the singularities of X , which were of type

A8 and whose resolution comprises 8 exceptional curves. This motivates where the I∗4
singularity come from, as all the 8 exceptional curves get compressed into a singular

fibre.

The theory of elliptic fibrations has helped us find the Picard rank quite easily, but

suppose we were studying a K3 surface without elliptic fibrations (which it is possible

for K3 surfaces with Picard rank smaller than 5).

We can still compute a lower bound for the Picard rank using the following strategy:

we can enumerate divisors of our surface and compute their intersection matrix to find

a set of independent elements of the Néron-Severi group. The size of this set is the lower

bound we are looking for.

For the X we are working with, we can easily compute many independent divisors,

as it is reflected in the Magma code (7.3). In fact, it is easy to check that the following 4
divisors are independent

ℓ : y = w = 0 ℓ2 : x− z = y + w = 0

ℓ3 : x+ z = y − w = 0 D6 : x− z = x2 + yw = 0

As none of these divisors contains a singular point, we deduce the existence of 20 independent
divisors inX , as we have these 4 plus the two sets of 8 exceptional lines that we get when
we blow-up the A8 singularities. By the same argument that ρ(X) ≤ 20, we are able to
prove that in characteristic zero, those divisors generate the Néron-Severi lattice of X ,

which has matrix:



−2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 −2 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −2 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 −2 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 −2 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 −2 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 −2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −2 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 −2 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −2 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −2 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −2 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −2


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5.3 Finding an upper bound of the Picard number

In characteristic zero we have many interesting tools to analyse K3 surfaces, mainly

given by Hodge theory and complex geometry. However, interestingly enough, working

in positive characteristic is precisely what will enable us to compute an upper bound of

ρ(X) by counting points onX over finite fields. This strategy has been used by many to

solve problems such as finding K3 surfaces with Picard number one and infinitely many

points [vL072] or elliptic K3 surfaces with Mordell-Weil rank 15 [Klo076].

Let k ∼= Fq for q = pr and let X = X ×Q Q and X̃p = X ×k k. We assume that X

and X̃p are integral projective surfaces. Let l ̸= p be a prime number. For any scheme Z
over k, we can define

H2
ét
(Z,Ql) =

(
lim←−H2

ét
(Z,Z/lnZ)

)
⊗Zl

Ql.

Furthermore, for every integer m and every vector space H over Ql with the Galois

group G(Fq/Fq) acting on it, we define the twistings of H to be the G(Fq/Fq)-spaces
H(m) = H ⊗Ql

W⊕m
, where

W = Ql ⊗Zl

(
lim←−µln

)
is the one-dimensional l-adic vector space on which G(Fq/Fq) operates according to

its action on the group µln ⊂ Fq of ln-th roots of unity. By setting W⊗0 = Ql and,

for m < 0, W⊗m = Hom(W⊗−m,Ql); for a surface Z over Fq, the cup product gives

H2
ét
(Z,Ql)(m) the structure of an inner product space for all integersm.

We then have the following result [vL073, Proposition 6.2].

Proposition 5.1. There exist natural injective homomorphisms

NS(X)⊗Ql
Ql ↪→ NS(X̃p)⊗Ql

Ql ↪→ H2
ét(X̃p,Ql)(1)

of finite dimensional vector spaces overQl such that the second injection respects the Galois
action of G(k/k).

For any variety Z , let FZ denote the absolute Frobenius which acts as the identity

on points and as f 7→ fp
on the structure sheaf. Let φ = F r

Xk
and let φ∗

2 denote the

automorphism on H2
ét
(X̃p,Ql) induced by φ × 1 acting on Xk ×k k ∼= X̃p. It is then

possible to prove that this φ∗
2 induces a homomorphism φ∗(1)

in H2
ét
(X̃p,Ql)(1).

Fromproposition 5.1, it can be shown [vL073, Corollary 6.3] that the image ofNS(X̃p)

inside of H2
ét
(X̃p,Ql)(1) lies in H2

ét
(X̃p,Ql)(1)

φ∗(1)
, from which we deduce that

ρ(X̃p) ≤ dimQl
H2

ét
(X̃p,Ql)(1)

φ∗(1)

In fact, there is a conjecture which states that, generally, these two numbers match:

Conjecture 5.1 (Tate’s conjecture). For any smooth projective surface over Fq, one
has

ρ(X̃p) = dimQl
H2

ét(X̃p,Ql)(1)
φ∗(1)

.
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Fortunately for us, Tate’s conjecture has been proven for ordinary K3 surfaces over

fields in all possible characteristics [Cha13, MP131, Mau1410, KMP1512]. This theory

gives us a way of computing ρ(X̃p), as dimQl
H2

ét
(X̃p,Ql)(1)

φ∗(1)
is equal to the number

of eigenvalues λ of φ∗
2 for which λ/q is a root of unity, counted with multiplicity.

In terms of computability, the first challenge is to calculate the characteristic polynomial

associated to φ∗
2. In order to do so, we need to make use of Lefschetz’s trace formula and

the Weil conjectures [FK88, Chapter IV]. Let φ∗
i denote the induced automorphism of φ

on H i
ét
(X̃p,Ql). Then, the characteristic polynomial of (φ∗

i )
n
acting on H i(X̃p,Ql) is

fi(t) = det
(
Id− t(φ∗

i )
n|H i(X̃p,Ql)

)
=

bi∏
i=1

(1− αijt).

From theWeil conjectures, we know that fi(t) is a rational polynomial and the reciprocal

roots have absolute value |αij| = pni/2.

Additionally, from X being a K3 surface, we know that the Betti numbers are:

i 0 1 2 3 4
bi 1 0 22 0 1

Thus, from the Weil conjectures, we deduce the following information:

i 0 1 3 4
fi(t) 1− t 1 1 1− p2t
Trφ∗

i 1 0 0 p2

Tr(φ∗
i )

n 1 0 0 p2n

From the last rowwe can compute the traces of powers ofφ∗
2 by applying the Lefschetz

formula

#Xp(Fpn) =
4∑

i=0

(−1)Tr(φ∗
i )

n,

which gives us the expression

Tr(φ∗
2)

n = #Xp(Fpn)− p2n − 1.

Finally, in order to find the characteristic polynomial of φ∗
2, we can use this result

[vL072, Lemma 2.4.]:

Lemma 5.1. Let V be a vector space of dimension n and L a linear operator on V . Let

li denote the trace of Li. Then, the characteristic polynomial of L is equal to

fL(t) = det(t · Id− T ) = tn + c1t
n−1 + c2t

n−2 + · · ·+ cn

where the ci are given recursively by

c1 = −l1 and −kck = lk +
k−1∑
i=1

cilk−i.
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To sum up all these results, we have deduced that for any prime p, if we are able to
compute the number of points of Xp over the field Fpn for 1 ≤ n ≤ 22, we will be able

to compute the characteristic polynomial of φ∗
2 and, subsequently, ρ(X̃p) as the number

of eigenvalues λ of for which λ/p is a root of unity.

In principle, computing #Xp(Fpn) for large n almost seems an impossible task. For

reference, 222 ≈ 4.2 × 106, so if we tried a brute force approach of checking if each

point [x : y : z : w] ∈ P3
over F222 belonged to X2, we would have to check more than

7.3× 1019 points!

Fortunately, the Weil conjectures tell us that the characteristic polynomial f2(t) of
Xp satisfies the functional equation

p22f2(t) = ±t22f2(p2/t)

which implies that we only need to compute #Xp(Fpn) up to n = 11, which is a great

improvement.

Let’s showcase this method for p = 2 on our favourite K3 surface

X : x3y + xy2w + zyw2 + z3w = 0 ⊂ P4.

Using Magma we can compute all points of X in F2n up to n = 10 to get

n 1 2 3 4 5 6 7 8 9 10
#X(F2n) 11 29 89 305 1121 4289 16769 66305 263681 1051649
Tr(φ∗

2)
n 6 12 24 48 96 192 384 768 1536 3072

cn −6 12 −8 0 0 0 0 0 0 0

Due to technical difficulties, I have not been able to compute#X(F211). However, in
this case (and inmany situations, in fact), knowing this quantity is not really necessary as

we can infer its value from the informationwe know about the characteristic polynomial.

First, let’s suppose that the sign in the functional equation is minus, so that

222f2(t) = −t22f2(4/t).

This necessarily implies that c11 = 0. From all the other ci that we know, we deduce that

f2(t) = t22 − 6t21 + 12t20 − 8t19 + 524288t3 − 3145728t2 + 6291456t− 4194304
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Now, if λ is a root of f2(t), then λ/2 is a root of g(t) = 2−22f2(2t). As

g(t) = 2−22f2(2t)

= t22 − 3t21 + 3t20 − t19 + t3 − 3t2 + 3t− 1

= (t− 1)3(t19 + 1)

we deduce that all the roots of g(t) are roots of unity. Therefore, assuming that the sign

of the functional equation is minus, ρ(X̃2) = 22.

Now, let’s suppose that the sign of the functional equation was a plus. From the

functional equation we can only deduce that

f2(t) = t22 − 6t21 + 12t20 − 8t19 + c11t
11 − 524288t3 + 3145728t2 − 6291456t+ 4194304

for some c11 ∈ Z. We then have

g(t) = 2−22f2(2t)

= t22 − 3t21 + 3t20 − t19 + 1
2048

c11t
11 − t3 + 3t2 − 3t+ 1

However, as we know that 1 must always be a root of g(t), we therefore deduce that

g(1) = 1
2048

c11 = 0 and so,

g(t) = 2−22f2(2t)

= t22 − 3t21 + 3t20 − t19 − t3 + 3t2 − 3t+ 1

= (t− 1)3(t19 − 1)

Hence, regardless of the sign of the functional equation, we deduce that

ρ(X̃2) = 22.

We also deduce that

ρ(X) ≤ ρ(X̃2) = 22

which, in this example, does not say much, but it is often a useful bound in the cases

where we are studying a K3 surface with low Picard rank. In those cases, combining the

bounds ρ(X̃p) that we get for different primes p, we can usually get an upper bound that

is quite close to the actual Picard rank of X .

What it is quite interesting for this example X is that both in characteristic zero

and in characteristic 2, our surface has the greatest Picard rank possible (20 and 22
respectively). In characteristic zero the surfaces with maximal Picard rank are called

extremal or singular, whereas in positive characteristic they are known as supersingular
surfaces.

This supersingularity condition has been proven to be equivalent to the fact that the

height of the formal Brauer group B̂r(X) is infinite [SS19, Section 12.4.1]. In the case

where X is defined over a finite field, then the height is visible in the Newton polygon

of the characteristic polynomial of φ∗
2 [SS19, Remark 11.21].
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5.4 Working with a supersingular surface in characteristic 2

In principle, there should be no reason why the elliptic fibration that we defined in

section 5.1 could not be properly defined over a field k with characteristic 2. However,
when we apply the algorithm to obtain theWeierstrass form of the fibration, we observe

that it takes the form

Y 2 = X3 + (t6 + t4 + t2)X + (t7 + t5).

Over k(t), it is easy to check that this curve has no singular points, as t7 + t5 is never
a square in k(t). However, when k is a perfect field in characteristic 2, every element

is a square and we thus deduce that all fibres of our surface are irreducible singular

rational curves. This phenomenon can only happen in characteristics 2 or 3 and, instead
of referring to it as an elliptic fibration, is called a quasi-elliptic fibration.

Following the algorithm described in Ito’s work [Ito941], which is an adaptation of

Tate’s algorithm for quasi-elliptic fibrations in characteristic 2, we can find the discriminant

of E(k(t)), which turns out to be

∆ = t8(t+ 1)4,

and the reduced forms at the places 0, 1 and∞ of this quasi-elliptic fibration, which are

Y 2 = X3 + (t6 + t2)X + t7 + t5,

Y 2 = X3 + (t+ 1)6X + (t+ 1)7 + (t+ 1)3,

Y 2 = X3 + (t−6 + t−2)X + t−7 + t−5.

From these normal forms we can deduce that in characteristic 2, E(k(t)) still has two
singular fibres of type I∗4 in t = 0 and t =∞, whereas the two I2 singular fibres that we
got in t = ±1 in the other characteristics get merged in characteristic 2, where there is
a I∗0 fibre at t = 1.
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6 Further work
Here are some possible topics that could be interesting to do research on next, as a

continuation of the theory that has been presented in this project.

6.1 Study of K3s in different ambient space

Earlier in the year, I found these examples of K3 surfaces Y , with

Y :

(
−1
3

)
⊂

(
1 1 0 −1 −2
0 0 1 1 1

)
that can be described by an equation of the form f = 0 where f being the sum of

4 monomials, present a singular fibre of the type EK with 6 ≤ K ≤ 8 in the point

[u : v , x : y : z] = [0 : 1 , 0 : 0 : 1] and have fibre rank at least 12.

Singular fibres

[0 : 1 , 0 : 0 : 1] [1 : 0 , 0 : 0 : 1] [1 : 0 , 0 : 1 : 0] [1 : 0 , 1 : 0 : 0] Fibre rank f
E6 A5 A1 12 u3v2z3 + u2xyz + v3y2z + x2y
E6 A3 A3 12 u3v2z3 + u3y2z + vx2z + vxy2

E6 A6 12 u4vz3 + ux2z + vx2z + vxy2

E6 D5 A1 12 u3v2z3 + u2vy2z + v3y2z + x2y
E6 D5 A1 12 u3v2z3 + uxy2 + vx2z + vxy2

E7 A4 A1 12 u3vyz2 + uxy2 + v2y3 + vx2z

E6 A1 A4 A2 13 u3v2z3 + u2xyz + vx2z + vxy2

E6 A6 A1 13 u2vxz2 + uxy2 + v2y3 + vx2z
E6 A2 A5 13 u5z3 + u3v2z3 + vx2z + vxy2

E6 D7 13 u3v2z3 + uvy3 + v3y2z + x2y
E6 E7 13 u5z3 + u3v2z3 + v3y2z + x2y
E7 D5 A1 13 u3v2z3 + uvy3 + uxy2 + vx2z

E6 E6 A2 14 u3v2z3 + u2y3 + vx2z + vxy2

E7 D7 14 u3v2z3 + uvy3 + vx2z + x2y

E6 A6 A3 15 u3v2z3 + u3xz2 + vx2z + vxy2

E6 A3 D6 15 u3v2z3 + u3vyz2 + v3y2z + x2y
E8 A2 A5 15 u5z3 + v2y3 + vx2z + vxy2

By analysing possible rational maps from(
1 1 0 −1 −2
0 0 1 1 1

)
−→ P(3, 1, 1, 1),

I have been able to construct birationalmaps from some of these K3 surfaces into varieties

that are defined as double covers of sextics. For instance,

u3v2z3 + u3xz2 + vx2z + vxy2 = 0 −→ s2 + x3y2z + x2yz3 + xy3z2 = 0

[u : v , x, y, z] 7−→ [s : x : y : z] = [u2vxyz : x : uvz : u2z]

u3v2z3 + u3vyz2 + v3y2z + x2y = 0 −→ s2 + xy4z + x3yz2 + x2yz3 = 0

[u : v , x, y, z] 7−→ [s : x : y : z] = [uvxy2 : uy : vy : uvz]

u5z3 + v2y3 + vx2z + vxy2 = 0 −→ s2 + sz3 + x2y3z + x3y2z = 0

[u : v , x, y, z] 7−→ [s : x : y : z] = [uvx2z : x : vy : u2z]
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It would be interesting to study these K3 surfaces defined as double covers of sextics,

as there is an easy way of constructing divisors as the pullback of plane lines that are

tritangent to the branch locus [FvS189].

Also, moving towards more intricate varieties, it would be nice to study 3-folds

endowed with elliptic fibrations which could be constructed from the examples of K3

surfaces that we have found.

6.2 Analysis of other aspects of our supersingular surface X

In this project we have only studied one elliptic fibration of X . However, the lines

that we found on section 5.1 to study the Picard rank, can allow us to construct other

elliptic fibrations, that will likely present different trivial lattices, Mordell-Weil lattices

and torsion. Studying those could be interesting as we might find fibrations in which

the Mordell-Weil group has a high rank, and thus, by specialising in certain fibres, we

could build explicit examples of elliptic curves with high ranks, as in [SS19, Chapter 13].

A similar problem but with a different flavour would be counting all possible types

of elliptic fibrations onX . This goal can be achieved by studying which possible lattices

can arise as sublattices of NS(X), as shown in the work of Bertin et al. [BGH
+
15].

Another alternative would to study specific structures that are associate toX for its

condition of supersingular surface. An example of this would be analysing its Shioda-
Inose structure, that is, how to construct a rational map of degree two to some Kummer

surface in a way that the transcendental lattice T (X) is preserved, which is the image

of NS(X)⊥ inside of H2(X,Z) [SS097, Section 13.4].

Finally, it is important tomention that every singular K3 surfaceX overQ ismodular:

the Galois representation on T (X) is associated to a Hecke eigenform of weight 3. Not

only that, but most of the known Hecke eigenforms of weight 3with eigenvalues ap ∈ Z
are associated to a singular K3 surface over Q [SS097, Section 13.13], so it could be very

formative to study this correspondence in an explicit example.



38

7 Magma code

7.1 Geometric analysis of the surface X

k := Rationals();
P3<x,y,z,w> := ProjectiveSpace(k,3);
X := Surface(P3,x^3*y + x*y^2*w + z*y*w^2 + z^3*w);
X;
GeometricGenus(X);
ArithmeticGenus(X);
Irregularity(X);
[ChernNumber(X,i) : i in [1,2]];
for i in [0..2], j in [0..2] do
printf "%o,%o : %o ",i,j,HodgeNumber(X,i,j);
end for;
IsNormal(X);
HasOnlySimpleSingularities(X : ReturnList := true);
KodairaEnriquesType(X);

7.2 Construction of an elliptic fibration

Q<t> := FunctionField(Rationals());
P<x,y,w> := ProjectiveSpace(Q,2);
C := Curve(P, x^2*y+y^2*w+t*y*w^2+t^3*x^2*w);
pt := C![1,0,0];
E := MinimalDegreeModel(EllipticCurve(C,pt));
TorsionSubgroup(E);
LocalInformation(E);
Discriminant(E);
Conductor(E);
jInvariant(E);

K<t> := FunctionField(GF(3));
P<x,y,w> := ProjectiveSpace(K,2);
C := Curve(P, x^2*y+y^2*w+t*y*w^2+t^3*x^2*w);
pt := C![1,0,0];
E := MinimalDegreeModel(EllipticCurve(C,pt));
E;
TorsionSubgroup(E);
LocalInformation(E);
Discriminant(E);
Conductor(E);
jInvariant(E);
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7.3 Intersection matrices

k := Rationals();
P3<x,y,z,w> := ProjectiveSpace(k,3);
X := Surface(P3,x^3*y+x*y^2*w+z*y*w^2+z^3*w);
R := CoordinateRing(P3);
L0 := Divisor(X,ideal<R|x,z>);
H := Divisor(X,ideal<R|x>);
D0 := H - L0;
L1 := Divisor(X,ideal<R|y,w>);
L2 := Divisor(X,ideal<R|x-z,y+w>);
L3 := Divisor(X,ideal<R|x+z,y-w>);
L4 := Divisor(X,ideal<R|y,z>);
L5 := Divisor(X,ideal<R|x,w>);
D6 := Divisor(X,ideal<R|x-z,x^2+y*w>);
D7 := Divisor(X,ideal<R|y+w,z^2+x*z+x^2-w^2>);
D8 := Divisor(X,ideal<R|x+z,x^2+w*y>);
D9 := Divisor(X,ideal<R|y-w,x^2+z^2-x*z+w^2>);
D10 := Divisor(X,ideal<R| x*y-w*z,x^2+2*y*w+z^2>);

dlist := [*D0, L1, L2, L3, L4, L5, D6, D7, D8, D9, D10*];
dlist;
mat := Matrix(Rationals(), #dlist, #dlist, [<i, j,

IntersectionNumber(dlist[i],dlist[j])>:i,j in [1..#dlist]]);
mat;
Rank(mat);
shlist := [*D0, L1, L2, L3, L4, L5, D6, D7, D10*];
Rank(Matrix(Rationals(), #shlist, #shlist, [<i, j,

IntersectionNumber(shlist[i],shlist[j])>:i,j in [1..#shlist]]));

nlist := [*L1, L2, L3, D6*];
nmat := Matrix(Rationals(), #nlist, #nlist, [<i, j,

IntersectionNumber(nlist[i],nlist[j])>:i,j in [1..#nlist]]);
nmat;
Rank(nmat);
sing,typ := ResolveSingularSurface(X);
sing;
s1:=ChangeRing(IntersectionMatrix(sing[1]),Rationals());
s2:=ChangeRing(IntersectionMatrix(sing[2]),Rationals());

lat := DirectSum(DirectSum(nmat,s1),s2);
lat;
Rank(lat);
Determinant(lat);
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7.4 Computation of an upper bound of the Picard rank

p := 2;
N := 10;
sign := 1;
L1 := [];
L2 := [];
for n in [1 .. N] do

P<x,y,z,w> := ProjectiveSpace(GF(p^n),3);
X := Surface(P, y*x^3 + x*y^2*w + z*w^2*y + w*z^3);
pts := #[pt: pt in Points(X)];
Append(~L1, pts);
Append(~L2, pts-p^(2*n)-1);

end for;
L1;
L2;
L3 := [-L2[1]];
for k in [2 .. N] do

count := 0;
for i in [1 .. k-1] do

count := count+ L3[i]*L2[k-i];
end for;
Append(~L3,(L2[k]+count)/(-k));

end for;
for j in [1 .. N] do

Append(~L3, sign*L3[N+1-j]*p^(2*j));
end for;
Append(~L3, sign*p^(2*N+2));
L3;
if sign eq -1 then

Insert(~L3, N+1, 0);
else

count := p^(2*N+2);
for i in [1 .. N] do

count := count + L3[i]*p^(2*N+2-i);
end for;

for i in [1 .. N+1] do
count := count + L3[N+i]*p^(N+1-i);

end for;
Insert(~L3, N+1, count);
end if;
L3;
P<t> := PolynomialRing(Rationals());
f := t^22+ Polynomial(Reverse(L3));
g := p^(-22)*Evaluate(f, p*t);
Factorisation(g);
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